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It has been known for some time that the unsteady interaction between a simple
elastic plate and a mean flow has a number of interesting features, which include,
but are not limited to, the existence of negative-energy waves (NEWs) which are
destabilized by the introduction of dashpot dissipation, and convective instabilities
associated with the flow–surface interaction. In this paper we consider the nonlinear
evolution of these two types of waves in uniform mean flow. It is shown that the NEW
can become saturated at weakly nonlinear amplitude. For general parameter values
this saturation can be achieved for wavenumber k corresponding to low-frequency
oscillations, but in the realistic case in which the coefficient of the nonlinear tension
term (in our normalization proportional to the square of the solid–fluid density
ratio) is large, saturation is achieved for all k in the NEW range. In both cases the
nonlinearities act so as increase the restorative stiffness in the plate, the oscillation
frequency of the dashpots driving the NEW instability decreases, and the system
approaches a state of static deflection (in agreement with the results of the numerical
simulations of Lucey et al. 1997). With regard to the marginal convective instability,
we show that the wave-train evolution is described by the defocusing form of the
nonlinear Schrödinger (NLS) equation, suggesting (at least for wave trains with
compact support) that in the long-time limit the marginal convective instability
decays to zero. In contrast, expansion about a range of other points on the neutral
curve yields the focusing form of the NLS equation, allowing the existence of isolated
soliton solutions, whose amplitude is shown to be potentially significant for realistic
parameter values. Moreover, when slow spanwise modulation is included, it turns out
that even the marginal convective instability can exhibit solitary-wave behaviour for
modulation directions lying outside broad wedges about the flow direction.

1. Introduction
The unsteady interaction between a solid structure and the surrounding fluid is of

considerable practical concern across a wide range of technological and biological
applications, as well as being of fundamental interest in its own right. An apparently
simple model problem involves a flat elastic plate driven by harmonic excitation, with
a mean fluid flow above it. Two aspects of this problem will be of interest here. First,
Landahl (1962) and Benjamin (1960, 1963) considered modal wave energy, being the
work done in building up the mode from rest at time t = −∞. They showed that over
a range of frequencies there exist neutral modes with negative wave energy, which we
refer to as negative-energy waves (NEWs) (also termed class A waves by Benjamin).
These waves are unusual in that application of damping to the system, such as by
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addition of dashpots fixed to the plate, necessarily lowers the total system energy and
thereby destabilizes the NEWs. This idea has been explored further by Cairns (1979),
who derived a simple expression for the wave energy. Second, the fluid-loaded plate
with mean flow possesses convective instabilities associated with the flow–surface
interaction. Brazier-Smith & Scott (1984) and Crighton & Oswell (1991) showed that
with uniform mean flow the system is convectively unstable for all non-zero flow
speeds below some critical value, and is absolutely unstable for larger flow speeds.
With a more realistic steady boundary layer profile, this behaviour is again found,
but additional instability modes associated with the boundary layer are also present
– see Carpenter & Garrad (1985, 1986) for full details.

The work described above has been completed using strictly linear theory. However,
it is important to understand the effects of nonlinearity, particularly with regard to the
evolution, and possible amplitude saturation, of the linear instabilities. The nonlinear
motion of fluid-loaded plates in the absence of mean flow has been considered by a
number of authors. For instance, in the regime of light fluid loading, where the most
significant nonlinearity corresponds to the additional plate tension due to bending,
Abrahams (1987) has considered the resonance of a finite elastic baffle. Sorokin (2000)
has recently extended this work to heavy fluid loading, in which case nonlinear terms
in the fluid–plate coupling must also be included. D. G. Crighton (1997, personal
communication) has suggested considering the nonlinear behaviour of infinite fluid-
loaded plates with mean flow, with the inclusion of yet further nonlinearities to account
for geometrical effects in the plate. This suggestion is now investigated in this paper,
first in the context of a NEW destabilized by the presence of plate dashpots, then for
the (marginal) convective instability mode mentioned in the previous paragraph and
then finally for other neutral modes. We restrict attention here to strictly uniform
mean flow. We also consider only infinite plates, although it should be noted that the
behaviour of finite plates can in some respects be quite different – see for example
Lucey (1998).

In § 2 we describe the governing equations. The NEWs and convective instabilities
we are interested in are found only under heavy fluid loading conditions, and this
means that the nonlinearities described by Sorokin (2000) must certainly be included.
In § 3 we consider the evolution of a NEW excited by damping, and it is shown
that the application of standard weakly nonlinear analysis to a mode of the form
exp (ikx− iωt) at fixed ω does not lead to saturation of the linear instability, except
in the special case when ω is very small, implying, rather unrealistically, that the
NEW will typically grow to O(1) amplitude. However, we are able to show that small-
amplitude saturation can be achieved for all frequencies in the NEW range in an
alternative way, in which the nonlinear tension term in the plate equation is allowed to
feature at leading order (the coefficient of this term in our non-dimensional equations
is in fact proportional to the square of the solid–fluid density ratio, which is clearly
large in many practical applications). The mechanism for amplitude saturation in this
case is shown to be that the growth of the linearly unstable NEW leads to an increase
in the plate-induced tension, and hence to an increase in the effective plate stiffness
opposing the destabilizing effects of the fluid. The growth rate of the instability is then
reduced, leading to a reduction in the rate of working of the damping, and hence, since
the rate of working is proportional to ω2, to a decrease in the oscillation frequency.
Equilibrium is reached when the plate stiffness and hydrodynamic loading balance,
for which ω = 0 and the plate is in a state of static deflection. A generalization of
Cairn’s (1979) expression for the wave energy is also presented.

In § 4 we consider weakly nonlinear analysis of the (marginal) convective instability,
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Figure 1. The geometry of the system.

and show that the spatio-temporal evolution of the wave train is governed by the
nonlinear Schrödinger (NLS) equation with real coefficients. The signs of these
coefficients predict wave defocusing, leading to the conclusion that the convective
instability will typically decay in the long-time limit. However, we show in § 5 that
the focusing form of the NLS equation is obtained when one expands about a range
of other points on the lower branch of the neutral curve, allowing the existence
of isolated solitons. Moreover, we show in § 6 that when slow spanwise modulation
is included even the convective instability can exhibit solitary-wave behaviour, for
modulation directions lying outside (rather broad) wedges about the flow direction.

2. Problem formulation
2.1. Governing equations

We consider an infinitely long, thin elastic plate of uniform thickness h∗ (here the suffix

∗ is used to denote dimensional variables), and bending stiffness B∗ = E∗h3∗/12(1−ν2),
where E∗ is Young’s modulus and ν is the Poisson ratio. The plate has mass per
unit area m∗, where m∗ = h∗ρs∗ and ρs∗ is the solid density. We suppose that the
undisturbed plate lies in the plane y∗ = 0 aligned along the x∗-axis. In y∗ < 0 there is
a vacuum, but in y∗ > 0 there is an incompressible fluid of uniform density ρf∗ , which
in its undisturbed state has a uniform flow of speed U∗ in the positive x∗-direction.
The plate is assumed to be infinite in the spanwise direction, and (apart from in the
final section) we will restrict attention to purely two-dimensional motion. We follow
Crighton & Oswell (1991) and non-dimensionalize lengths by m∗/ρf∗ and time, t∗, by

m
5/2
∗ /(ρf∗)2B

1/2
∗ , so that for instance in these new units the dimensionless flow speed

is U = U∗m
3/2
∗ /ρ

f
∗B

1/2
∗ . In what follows we will work exclusively in dimensionless

variables. The system is shown in figure 1.
One important question to address straightaway is whether we are to consider the

regimes of either light fluid loading or heavy fluid loading. Specifically, for a wave of
dimensional frequency ω∗ the light and heavy fluid loading regimes are usually taken
to be defined by the ratio µ/kp being small or large respectively, where µ = ρ

f
∗/m∗ and

kp is the plate bending wavenumber with k4
p = m∗ω2∗/B∗. This ratio is proportional to

the ratio of the mass of fluid in one bending wavelength to the mass per unit area of
the plate, and reduces to simply ω−1/2, where ω is the non-dimensional frequency. It
will be seen in § 2.2 that the linear instabilities we wish to analyse occur at very low
values of ω for realistic flow speeds, and it therefore follows that we must consider
the limit of heavy fluid loading. The consequence of this, as pointed out by Sorokin
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(2000), is that nonlinear effects must be included in both the plate equation and in
the equations describing the boundary condition between the fluid and the plate.

Nonlinear effects must certainly be included in the plate equation for the flexural
deflection η(x, t). D. G. Crighton (1997, personal communication) has suggested that
these will correspond to inclusion of the full nonlinear expression for the plate
curvature in the elastic term and the calculation of the hydrodynamic pressure on
the genuine plate surface y = η(x, t) rather than on y = 0. Another nonlinear effect
arises from the tension induced in the plate due to bending – see Dowell (1975),
Abrahams (1987). Previous work on this extra tension term has tended to focus on
finite elastic baffles. In order to incorporate the tension within a model of an infinite
plate, we follow Sorokin (2000) and suppose that the plate has periodically arranged
hinges at x = ns, n = 0,±1,±2, . . ., which allow vertical, but not horizontal, deflection
of each fixing point. When this tension term is included we are therefore forced to
restrict attention to disturbances of wavelength s ≡ 2π/k, and higher harmonics, and
the nonlinear tension in the plate can be determined by integrating over a single
wavelength. In this paper we will first consider the effects of both classes of plate
nonlinearity on the stability of NEWs. We will then neglect the tension term (this
is equivalent to removing the hinges and supposing that the nonlinear tension is
relaxed to zero along the infinite plate), and consider the effects of the remaining
nonlinearities on convective instabilities.

Following the arguments advanced in the previous paragraph we arrive at the
nonlinear plate equation

∂2

∂x2

[
ηxx

(1 + η2
x)

3/2

]
+ ηtt − τ

s

(∫ s

0

η2
x′ dx

′
)
ηxx + εcdηt = −p(x, y = η, t). (2.1)

Here the first term on the left corresponds to the elastic restoring force (i.e. the second
derivative of plate curvature). A number of models of plate dynamics (e.g. Sorokin
2000) neglect the nonlinear effects of non-zero curvature, but this will be included
here as it seems to be an appropriate geometric effect for an infinite plate. However,
as will be noted in the final section, this nonlinearity has no qualitative effect on the
results. The second term in (2.1) is the plate inertia, and the third term is the nonlinear
tension due to bending, where τ = 6(1− ν2)(ρs∗/ρ

f
∗)2 (see Abrahams 1987). Note that

only the leading-order term, consistent with subsequent analysis, has been included
in the induced tension. The fourth term on the left of (2.1) represents the effects of
dampers, or dashpots, attached to the underside of the plate. These dashpots provide
a drag force which is proportional to speed, with dimensionless drag coefficient εcd (ε
is included here for the purposes of subsequent asymptotic analysis, in which ε → 0
and cd = O(1)). The inclusion of dashpots is a key element in this paper, because
we will subsequently be studying the evolution of NEWs, which are destabilized by
dissipation. Of course, the issue of the form of nonlinear plate equations is a difficult
one, especially for finite systems, and the reader is referred to Paidoussis (1998) for a
full discussion of these issues as they relate to slender structures.

On the right-hand side of (2.1), p(x, y, t) is the hydrodynamic pressure which
provides the fluid loading. The hydrodynamic pressure is given by the (nonlinear)
Bernoulli equation

p = −φt −Uφx − 1
2
(φ2

x + φ2
y), (2.2)

where the velocity potential φ(x, y, t) satisfies Laplace’s equation

∇2φ = 0. (2.3)
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By restricting attention to the irrotational flow of an incompressible fluid, the fluid
motion is described exactly by Laplace’s equation without the need to include further
nonlinearity. In addition, we must apply a boundary condition between the plate and
the fluid, and this corresponds to the condition of the continuity of vertical velocity,
which takes the form

φy = ηt + (U + φx)ηx (2.4)

applied on the actual surface y = η(x, t).
Equations (2.1)–(2.4) describe the nonlinear problem to be considered in this paper,

and it is worth briefly comparing these equations with similar systems which have
been studied previously. Abrahams (1987) considered a finite elastic baffle under
light fluid loading, without damping. In this limit it is argued that the Bernoulli
equation can be linearized, the hydrodynamic loading is evaluated on y = 0 and
the only significant nonlinearity in the plate equation is the tension due to bending
term. Sorokin (2000) has considered the equivalent problem to that of Abrahams,
again without the damping terms, but in the limit of heavy fluid loading. In that
model the same nonlinear plate equation as in Abrahams (1987) is used, but now the
nonlinearity in equations (2.2) and (2.4) is included as described here. One difference
between our present study and Sorokin (2000) is that the latter considers compressible
flow, and argues that to the appropriate order of approximation the unsteady flow in
the bulk of the fluid satisfies the linear wave equation. Finally, we note that an initial
study of equations (2.1)–(2.4), but without the tension due to bending and damping
terms, has been completed by D. G. Crighton (1997, personal communication).

2.2. Linearized solution

When all the nonlinear terms in equations (2.1)–(2.4) are neglected, the boundary
condition (2.4) is applied on the mean surface y = 0 and the dashpot term is
removed, we are left with precisely the linearized system studied by Brazier-Smith &
Scott (1984) and Crighton & Oswell (1991). By considering harmonic disturbances
proportional to exp (ikx− iωt), these authors are able to derive a dispersion relation
of the form

D(k, ω) ≡ ω2 − k4 +
(ω − kU)2

|k| = 0, (2.5)

where |k| = ±k when the real part of k is positive and negative respectively. It turns
out that the system is absolutely unstable for U > Uc = 0.0742 . . ., while for U < Uc

the dispersion diagram takes the form shown in figure 2.
There are two key features to be noted from the linear behaviour. First, on the

lower branch of the neutral curve the modes are NEWs for kb < k < k0, where
k0 = U2/3 is the point where ω = 0. The idea of the wave energy was introduced by
Landahl (1962) and Benjamin (1963), and corresponds to the work done in slowly
building up the wave starting from rest at time t = −∞. For this linearized system,
Cairns (1979) shows that the wave energy, W0, is given for positive k by

W0 ≡ E|A|2 ≡ ω

4

∂D

∂ω
|A|2 =

ω

2

[
ω +

(ω − kU)

k

]
|A|2, (2.6)

and it is a straightforward matter to show that E is indeed negative on the lower
branch for positive ω. Since the excitation of a NEW reduces the overall system energy,
it follows that NEWs are destabilized, according to linear theory, by the introduction
of dashpots. Second, for 0 < ω < ωs(U) the system is spatially convectively unstable.
Specifically, for each ω in this range there exists a conjugate pair of complex roots
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Figure 2. The linear dispersion diagram, describing equation (2.5). Here U = 0.05. A magnified
view of the region around kb is also shown. Solid lines represent neutral modes, and the dashed line
is the real part of k(ω) for the convective instability.

in the k-plane, and it is shown in Brazier-Smith & Scott (1984) that the root with
negative imaginary part, k(ω) say, is indeed a downstream-propagating convective
instability. In the rest of this paper we will consider the nonlinear development of
first the NEWs and then the (marginal) convective instabilities. Of course, once the
damping is introduced the NEWs also correspond to convective instabilities, apart
from at the turning point k = kp, which becomes an absolute instability.

It should be noted from figure 2 that the various coordinates are small, and indeed
Crighton & Oswell (1991) have shown that in the limit of small U we have ks,b = O(U),
ωs,b(U) = O(U2), while the remaining turning point on the lower branch scales as
kp = O(U2/3), ωp = O(U5/3). This limit of small U is entirely realistic in practice
(for 2 cm thick steel in water the case U = 0.05 plotted in figure 2 corresponds to
a dimensional flow speed of 9.8 m s−1, which is towards the top end of the range of
feasible speeds underwater), and this therefore confirms the assertion made earlier
that we must consider heavy fluid loading, since clearly ω � 1 for the waves we are
interested in.

3. Negative-energy waves
We have already noted that the linearized version of the problem possesses NEWs,

which are destabilized by the introduction of dashpots. Specifically, if we consider a
neutral mode on the lower branch with wavenumber in the range kb < k < k0 then
E is negative, and if the (linearized) dashpot term is introduced, as in (2.1), then
by introducing the slow time T1 = εt it is straightforward to show that the wave
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amplitude A(T1) satisfies

dA

dT1

+
cdω

2

4E A = 0, (3.1)

so that the wave grows, with amplitude proportional to exp (−ω2εcdt/4E). In this
section we aim to determine the nonlinear temporal evolution of this wave. The
spatial wavenumber k is held fixed, in order to include the nonlinear tension term,
as described in § 2.1. We consider three cases: the first with the tension coefficient
τ taken to be O(1) and ω arbitrary within the NEW range, second with τ = O(1)
and ω small, and third with τ � 1 and ω again arbitrary. In the first case it will be
suggested that saturation can only occur at O(1) amplitude, while in the second and
third cases weakly nonlinear saturation will be achieved.

3.1. τ = O(1)

We attempt weakly nonlinear analysis of the problem by writing

η(x, t) = ε1/2[AE + c.c] + ε[η(2)
1 A

2E2 + η
(1)
1 AE + c.c.+ η

(0)
1 ] + · · · ,

p(x, y, t) = ε1/2(Ap(1)
0 E exp (−ky) + c.c.) + ε(p(2)

1 A
2E2 exp (−2ky)

+p(1)
1 AE exp (−ky) + p

(0)
1 |A|2 + c.c.) + · · · ,

 (3.2)

with a similar expression for φ(x, y, t), where E = exp (ikx− iωt). In the first instance
we suppose that ω and τ are O(1). At O(ε1/2) we find exactly the linear problem of
Crighton & Oswell, with D(k, ω) = 0 and the leading-order amplitudes of the pressure
and velocity potential on y = 0 being p

(1)
0 = −(ω − kU)2/k and φ

(1)
0 = i(ω − kU)/k

respectively. At O(ε) we find that

η
(2)
1 = − (ω − kU)2

D(2k, 2ω)
,

p
(2)
1 = − (ω − kU)2

D(2k, 2ω)

{
8ω2 − 32k4 +

2(ω − kU)2

k

}
,

φ
(2)
1 =

−ip(2)
1

2(ω − kU)
,

p
(0)
1 = −2(ω − kU)2,


(3.3)

with all other unknown quantities at O(ε) being zero (note that if D(k, ω) = 0 then it
is easy to show that D(2k, 2ω) is strictly negative). After some algebra, we then find
that at O(ε3/2) we have the amplitude equation

dA

dT1

+
cdω

2

4E A+ iβ1A|A|2 = 0, (3.4)

where

β1 =

4k(ω − kU)2 − 3k6 − 4(ω − kU)4

D(2k, 2ω)
+ 4τk4

4

(
ω +

(ω − kU)

k

) (3.5)

is real. The solution of this Landau equation is simply that |A(T1)| grows exponentially
exactly as in the linear system (3.1), and only the phase of A(T1) undergoes nonlinear
modification.
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In order to attempt to find a nonlinear saturated state one is therefore led to
attempt to balance the linear growth with a quintic term. Specifically, if one now
takes η = O(ε1/4) and introduces two slow time scales T1 = ε1/2t and T2 = εt then
after a considerable amount of algebra it turns out that

∂A

∂T1

+ iβ1A|A|2 = 0,
∂A

∂T2

+
cdω

2

4E A+ iβ2A|A|4 = 0, (3.6)

where β2 is also real. Hence, once again the nonlinear term acts only to modify the
phase of A(T1, T2) and does not saturate the linear instability. Indeed, it seems that
one could continue this process indefinitely, choosing scalings to balance successively
higher nonlinearities, but on each occasion the coefficient of the nonlinear term would
be imaginary. This sort of behaviour suggests that the NEW could only be stabilized
at O(1) amplitude, as observed by Smith & Burgraff (1985) and Moston, Stewart &
Cowley (2000) in the context of instability wave behaviour in the flat-plate boundary
layer. The reason for this is the fact that the term driving the linear instability (i.e.
εcdηt) is apparently exactly out of phase with the nonlinear restoring terms (typically
of the form η2

x etc.)
It does not seem possible to complete an O(1) amplitude analysis of the complicated

equations (2.1)–(2.4), even if one were to omit the geometrical nonlinearities contained
in the plate equation and restrict attention to just the tension due to bending and
the nonlinearities in the boundary condition. However, it turns out that there are two
alternative limits which will in fact lead to the more expected situation of saturation
at small amplitude. We now consider these possibilities in turn.

3.2. τ = O(1), low frequency

There is one circumstance when the weakly nonlinear analysis described above will
actually yield a saturated solution, and that corresponds to the limit of small ω. We
write ω = εω̄ with ω̄ = O(1) and again use the scaling η = O(ε1/2) as in (3.2), with
slow times T1 = εt and T2 = ε2t. At O(ε3/2), equation (3.4) becomes simply

∂A

∂T1

+ iβ1A|A|2 = 0, (3.7)

where in the limit of small ω we have k → k0 = U2/3 and

β1 → − 9
28
U3 − τU5/3. (3.8)

At O(ε5/2) we then find the equation

∂A

∂T2

+ iβ3A|A|4 − i

2U

[
cd
∂A

∂T1

− iω̄cdA

]
= 0, (3.9)

where β3 is real. Using (3.7) it follows that, since β1 < 0, this equation does indeed
result in a saturated state, with

|A| →
[

ω̄
9
28
U3 + τU5/3

]1/2

(3.10)

as T2 → ∞. It should be noted that although this saturated amplitude is formally
O(ε1/2), its coefficient could be large, given that U is often small in practice.

The mechanism which has provided the amplitude saturation for small ω is simply
the fact that the nonlinearities act to reduce (since β1 is negative) the oscillation
frequency of the dashpot term εcd∂η/∂t over the first slow time-scale T1 according
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to equation (3.7). Over the second slow time scale T2 the growth rate of the NEW is
proportional to the oscillation frequency of the dashpot motion, and since the rate
of working of the dashpot is proportional to the square of its velocity, saturation is
achieved when this frequency is forced to zero. Of course this relies on ω being small,
and the same result is certainly not achieved in the previous subsection, where the
term driving the instability of the NEW, −iωεcdA, is necessarily asymptotically larger
than the nonlinear phase adjustment term ε2cd∂A/∂T1. We note from (3.8) that β1

contains contributions from both the tension due to bending term (proportional to
τ) and the other nonlinearities associated with the boundary conditions and the plate
geometry (with net effect proportional to U3 in (3.8)). These terms are both negative,
so that both sorts of nonlinearity have the effect of slowing down the oscillation.
In this limit it follows that the presence of the tension due to bending term (with
the associated constraints described in § 2.1) is not necessary to achieve amplitude
saturation.

3.3. Large τ

The factor τ multiplying the tension term in (2.1) is in fact a large number in many
practical situations, owing to the fact that it is proportional to the squared solid-to-
fluid density ratio (ρs∗/ρ

f
∗)2 – for steel in water we have ν = 0.3 and ρs∗/ρ

f
∗ = 7.8, so

that τ = 332.2. This suggests that the nonlinear tension term could in fact play a more
significant role in the plate dynamics than is implied by the above analysis, in which
we implicitly assumed that τ = O(1). We will therefore now consider the realistic case
of τ large, and take the preferred limit τ = ε−2τ̄ with τ̄ = O(1). We suppose that ω
takes any value in the NEW range. The appropriate scaling for the plate deflection
now turns out to be

η(x, t) = ε[AE + c.c.] + · · · , (3.11)

with A = A(T ) and T = εt, but this time we must allow the frequency of the motion
to vary, so that now

E = exp

(
ikx− i

ε

∫ T

ω(T ′) dT ′
)
. (3.12)

Substituting this expansion, and equivalent expansions for the potential and pressure,
into (2.1)–(2.4) we find at O(ε) the amplitude-dependent dispersion relation

DNL(k, ω, |A|) ≡ ω2 − k4 +
(ω −Uk)2

|k| − 2k4τ̄|A|2 = 0. (3.13)

This can be compared with the linearized dispersion relation (2.5), and it becomes clear
that interestingly the effect of the nonlinear tension is not to introduce a conventional
tension (which would appear as a term proportional to k2 in the dispersion relation),
but rather is to increase the effective stiffness of the plate (i.e. the amplitude term
appears as the coefficient of k4). At O(ε2) we then find the solvability condition

d|A|
dT

{
2ω +

2(ω − kU)

k

}
+ |A|dω

dT

(
1 +

1

k

)
+ ωcd|A| = 0, (3.14)

and, using (3.13) to determine dω/dT , the amplitude equation follows as

d|A|
dT

+
cdω

2

4ENL |A| = 0, (3.15)
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where

ENL = E+
(k + 1)ω2τ̄k3|A|2

4E . (3.16)

Equation (3.15) is solved with ω given as a function of |A| from (3.13); specifically

ω =
U ± [k4 + k3 −U2k + 2k3(k + 1)τ̄|A|2]1/2

1 + (1/k)
. (3.17)

If we were to linearize these equations in amplitude, then the dispersion relation
(3.13) would reduce to the linear dispersion relation (2.5), ENL would reduce to E, the
frequency ω would become constant and equation (3.15) would reduce to equation
(3.1).

We now recall that the wave energy is defined to be the work done in slowly
building up the wave to its current amplitude, starting from rest at time t = −∞, and
it is shown in the Appendix that the wave energy in our system is

W (T ) =

∫ T

−∞
ENLd|A|2

dT ′
dT ′. (3.18)

This is the nonlinear generalization of the wave energy W0 identified by Cairns (1979)
for the linear problem (given here in equation (2.6)). It is clear that, in contrast to
W0, W (T ) is not only time-dependent but also depends on the precise way in which
the wave amplitude is built up from zero. From the derivation of (3.15) it is clear
that the differences between W (T ) in (3.18) and W0 in (2.6) have arisen from the fact
that the frequency ω now evolves on the slow time scale T , which is in turn due to
the fact that the amplitude now appears in the dispersion relation for ω at fixed k.
In the linear theory of Cairns, the sign of W0 is precisely the same as the sign of
E, and in our nonlinear theory a similar result holds; provided that we suppose that
the amplitude of the wave is built up from rest monotonically, i.e. d|A|2/dT > 0, it
follows that the sign of W (T ) is precisely the same as the sign of ENL. Following on
from (3.18), equation (3.15) can now be interpreted as being the equality between the
rate of change of the wave energy and the rate of working of the dashpots averaged
over a period of the fast oscillation.

Waves with initially positive linearized wave energy W0 are damped by the addition
of dissipation according to linear theory. From (3.16), ENL > E > 0 for these modes,
so that from (3.15) it follows that |A| still decays in T . Moreover, such a mode
corresponds to the positive root in (3.17), so that ω decreases with increasing T . As
T → ∞ we therefore have |A| → 0, and ω approaches the value predicted by linear
theory for the given value of k. In contrast, for waves with initially negative linearized
wave energy, it follows that ENL < E < 0, so that with the addition of dissipation
the wave amplitude grows with T . These modes correspond to the negative root in
(3.17), so that as |A| increases ω decreases, but this time ω decreases towards zero as
T →∞. This results in the saturated state in which ω → 0 and, from (3.13),

|A| → |A|s =

[
kU2 − k4

2k4τ̄

]1/2

. (3.19)

It is easy to see that |A|s is a real number, given that k has been chosen so that the
wave has E < 0 initially. It also follows that ENL → 0 as T →∞, but clearly the wave
energy itself will not approach zero – the wave energy in the saturated state will of
course correspond to the total energy extracted from the system by the dashpots over
−∞ < T < ∞. Sample plots of the evolution of A for various values of wavenumber
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Figure 3. Evolution of wave amplitude |A| with slow time T , for U = 0.05, |A(0)| = 0.1, τ̄ = 1 and
various values of k in the NEW range.

k for which ENL < 0 are shown in figure 3; these can be obtained in a very simple
manner by numerical integration of (3.15) using standard routines. Of course, for
initial amplitudes less than |A|s the wave amplitude grows as described above, as seen
in figure 3. For initial amplitudes in excess of |A|s, it is easy to show that the mode
on the minus branch of (3.17) has ω < 0 initially, so that E, and hence ENL, are
positive; the wave then decays, ω approaches zero from below and |A| approaches
the saturation value |A|s from above.

As already noted, the saturated amplitude is of size O(ε), and is therefore formally
small. However, the coefficient |A|s of this amplitude given by (3.19) will not itself be
small for O(1) values of τ̄; typically k and U are small, and it is shown by Crighton &
Oswell (1991) that the NEWs are described by either the scaling k = O(U2/3) (around
the points k = kp,0 in figure 2), in which case |A|s is an O(1) number, or by k = O(U2)
(around the points k = kb,s in figure 2), in which case |A|s is O(U−1/2), and is therefore
large. This behaviour is confirmed in figure 3; the lowest value of k shown there is
close to k = kb in linear theory, leading to the highest saturated amplitude.

The instability can be thought to arise from the way in which the destabilizing
force due to the fluid loading exceeds the restoring stiffness in the plate. It follows
that the weakly nonlinear mechanism for the saturation of NEWs is that the growth
in the wave amplitude excited by the dashpots increases the induced tension of the
plate, which in turn increases this restorative stiffness, thereby reducing the growth
rate. Equilibrium is then reached when the fluid and plate forces are balanced. Since
the rate of working of the dashpots is proportional to ω2, it also follows that the
reduction in growth rate leads to a reduction in frequency, until saturation occurs
at ω = 0, at which point the plate deflection is static and the dashpots do no more
work. Of course, this is equivalent to the effect described in the previous subsection,
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in which the (small) frequency experiences a nonlinear correction, which in effect
reduces the oscillation frequency of the dashpot to zero. It should be emphasized,
however, that the action of the nonlinear tension term with large τ will result in
saturation for all ω within the NEW range. It is pleasing to note that our prediction
of a saturated state of static deflection is in agreement with the results of numerical
simulations performed by Lucey et al. (1997). The non-zero static deflection of a finite
elastic baffle has been studied by Ellen (1997).

Finally we note that when the mean flow has a boundary-layer profile it has been
shown originally by Miles (1957) for water waves, and then in the present context
by Benjamin (1959, 1963), that the critical layer in the flow provides an out-of-phase
pressure component which acts to stabilize a NEW (see also § 3 of Carpenter &
Garrad 1986). In the present problem of uniform mean flow there is no critical layer,
of course, so that the mechanism for stabilizing the NEWs described in this section
does not rely on the steady-profile curvature.

4. Convective instability
We now move on to study the nonlinear spatial and temporal evolution of the

(marginal) convectively unstable waves. We will have in mind the downstream spatial
and temporal evolution of a wave train excited by a driver oscillating at a given
temporal frequency, which seems to be a scenario of relevance to fluid–structure
interaction problems. This will in effect mean that we will complete the weakly
nonlinear analysis about the neutral mode k = ks, ω = ωs, and we will now use the
small parameter ε to denote the size of the amplitude of the wave packet. Of course,
this analysis will not apply all along the convectively unstable branch, where the
growth rates can become quite significant. In order to obtain a cubic nonlinearity at
the appropriate order, it can easily be seen that we must expand the plate displacement
as

η = ε(AE + c.c.) + ε2(η(2)
1 A

2E2 + η
(1)
1 AE + η

(0)
1 |A|2 + c.c.) + · · · , (4.1)

where E = exp (iksx − iωst) and A is again the amplitude of the leading-order term
in the plate deflection. From figure 2 we have that Dk(ks, ωs) = 0 (this follows from
the identity ωk = −Dk/Dω and the fact that Dω remains finite for k 6= 0), suggesting
introducing the slow spatial and temporal scales X = εx, Y = εy and T = ε2t, with
A = A(X,T ). Expansions for the pressure and potential, similar to (4.1) but involving
additional dependence on y and Y , can be written down, and together with (4.1) are
substituted into the equations described in § 2.1. It proves convenient, however, to
write the pressure on y = 0 in the form

ε(Ap(1)
0 E + c.c.) + ε2(p(2)

1 A
2E2 + p

(1)
1 AE + p

(0)
1 |A|2 + c.c.) + · · · , (4.2)

with a similar expression for the potential on the surface.
Because we wish to consider both temporal and spatial evolution, we will here

neglect the nonlinear tension due to bending term in (2.1) by setting τ = 0. This is
because the introduction of this tension term requires us to consider fixed wavelength
disturbances, prohibiting the spatial modulation we want to include here. In physical
terms, removal of the nonlinear tension corresponds to adopting the scenario in which
the induced tension is relaxed to zero along the infinite plate. The dashpot term is
also removed, since the convective instability can be driven purely by the plate inertia
and stiffness and the mean flow.

At O(ε) we find exactly the linear problem of Crighton & Oswell, as in § 3.1. At
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O(ε2) we find that

η
(2)
1 = − (ωs −Uks)2

D(2ks, 2ωs)
, p

(2)
1 = 2i(ωs −Uks)φ(2)

1 ,

φ
(2)
1 =

i(ωs −Uks)
ks

η
(2)
1 + i(ωs −Uks),

p
(1)
1 = − i

ks

∂A

∂X
(ω2

s − k2
sU

2), φ
(1)
1 = −ωs

k2
s

∂A

∂X
,

p
(0)
1 = −(ωs − ksU)2,


(4.3)

with all other unknown quantities at O(ε2) being zero. At this order we have used the
fact that Dk(ks, ωs) = 0.

At O(ε3) we can now find the evolution equation for A(X,T ) by considering terms
proportional to E. After a great deal of algebra we find the equation

Dkk

2

∂2A

∂X2
− iDω

∂A

∂T
= lA|A|2, (4.4)

where the derivatives of D(k, ω) are evaluated at (ks, ωs) and the coefficient of the
cubic nonlinearity is given by

l =
3k6

s

2
− 2(ωs −Uks)4

D(2ks, 2ωs)
+ 2k(ωs − ksU)2. (4.5)

Using D(k, ω) = 0, it is easy to show that D(2k, 2ω) < 0 for any neutral mode,
and therefore that l > 0 always. In addition, it is straightforward to show that
Dω(ks, ωs) < 0 (this is in fact equivalent to the statement made in § 2.2 that the modes
on the lower branch are NEWs), and that Dkk(ks, ωs) > 0 (given that Dω(ks, ωs) < 0,
this follows from the fact that the turning point on the neutral curve at k = ks
is a minimum). In the limit of small U, Crighton & Oswell show that ks = O(U),
ωs = O(U2) and ωs − ksU = O(U5/2), so that Dω = O(U3/2), Dkk = O(U) and the
three terms in l are all of the same, relatively small, size O(U6). Equation (4.4) is
the nonlinear Schrödinger (NLS) equation with real coefficients (see Craik 1985;
Peregrine 1985; Johnson 1997), and the relative signs of the coefficients mean that
this is the so-called NLS minus form, which describes wave defocusing. For compact
initial data, as one might expect in some practical fluid-loading problems (say the
generation of a finite wave packet by a source oscillating over a finite time interval), it
is believed that in most cases the amplitude A(X,T ) will decay in time like T−1/2 (see
Craik 1985, p. 200). This specifically answers the question we posed at the beginning
as to the nonlinear evolution of the marginal convective instability – in the long-time
limit the wave train will eventually defocus and will decay to zero amplitude. Given
the relatively small size of the cubic coefficient l, however, one might expect that
the wave train would grow to relatively large amplitude linearly before the nonlinear
effects become important.

5. Other neutral waves
It is of course possible to complete the weakly nonlinear analysis of the previous

section about any point on the neutral curve, and, subject to making a Galilean
transformation so as to eliminate a term of the form iDk∂A/∂X, one would again end
up with exactly the NLS equation (4.4), but now with the derivatives of D and the
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various terms in l evaluated at the new neutral point. The numerical values of these
coefficients will of course change: specifically, in the region around k = kp it follows
from § 2.2 that for small U we have Dω = O(U), Dkk = O(U4/3) and all terms in l are
of the same size, O(U4).

We already know that Dω < 0 all along the lower branch of the neutral curve.
Since the turning point k = kp is a maximum, it is easy to see that there is a point on
the lower branch, k = ki say with ks < ki < kp, where Dkk vanishes, such that Dkk > 0
for k < ki and Dkk < 0 for k > ki (for U = 0.05, ki = 0.062 . . .). The significance of
this is that when k > ki the NLS equation (4.4) then takes the plus, or focusing, form
(see Peregrine 1985), allowing soliton solutions with |A| → 0 as |X| → ∞ to exist
(Zakharov & Shabat 1972). Specifically, the one-soliton solution of (4.4) is (see Craik
1985, p. 200)

A(X,T ) = a

∣∣∣∣Dkkl
∣∣∣∣1/2 sech

[
a

(
X +

bDkk

Dω
T

)]
exp

[
ibX − iDkk

2Dω
(a2 − b2)T

]
, (5.1)

where a and b are arbitrary. It is particularly noteworthy that the envelope amplitude
differs from the characteristic width by a factor |Dkk/l|1/2, and from the remarks in
the previous paragraph it follows that for small U this factor is O(U−4/3), i.e. the
soliton has a large amplitude relative to its width. It is therefore entirely reasonable
to expect that the evolution of the wave train will be characterized by the appearance
of a series of envelope solitons, the precise number of which being determined by the
initial conditions. Moreover, these solitons will have an amplitude of size O(εU−4/3),
which must be strictly small within the confines of the weakly nonlinear analysis used
here, but for practical values of U could well be significant, and therefore potentially
observable.

6. Slow spanwise modulation

So far we have restricted attention to two-dimensional motion. However, if we were
to consider three-dimensional disturbances, proportional to exp (−iωt + ikx + imz),
with z the spanwise coordinate, then it is easy to show that the linearized dispersion
relationship (2.5) becomes

D(k, m, ω) ≡ ω2 − k4 − m4 − 2k2m2 +
(ω − kU)2

(k2 + m2)1/2
= 0; (6.1)

essentially, this comes from replacing the fourth derivative in the linearized plate
equation by ∇4 and extending the dimension in the Laplace equation. The nonlinear
generalization of the fluid equations (2.2)–(2.4) to account for m 6= 0 is straightforward,
but the generalization of the plate equation (2.1) seems to be exceedingly difficult
and will not be discussed further. However, progress can be made by supposing
that although m = 0 the waves are slowly modulated in the spanwise direction by
introducing the slow coordinate Z = εz and setting A = A(X,Z, T ). In this way
the effects of spanwise curvature are excluded from the plate equation to the order
considered, with the effect that repeating the weakly nonlinear analysis of § 4, i.e.
expanding about the point k = ks, ω = ωs, m = 0, yields the NLS equation

Dkk

2

∂2A

∂X2
+
Dmm

2

∂2A

∂Z2
− iDω

∂A

∂T
= lA|A|2, (6.2)
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where the coefficients l, Dkk and Dω take the same value as in the strictly two-
dimensional case. Using (6.1) we have

Dmm = −4k2
s − (ωs − ksU)2

k3
s

, (6.3)

while Dkm vanishes for m = 0. It therefore follows that Dkk and Dmm have opposite
signs, leading to the possibility of the NLS equation taking either its plus or minus
form in different angular sectors in the (X,Z)-plane, in parallel to what is found by
Hui & Hamilton (1979) for the Kelvin ship-wave problem. Specifically, if we consider
modulation only in the direction X̄ inclined at an angle φ to the X-direction, then
it follows that inside the wedges tanφ = tanφs, where | tanφs| = |Dkk/Dmm|1/2, we
have the minus (defocusing) form of the NLS equation, while outside the wedges we
have the plus (focusing) form of the NLS equation. It is easy to see that this wedge
angle is large, and specifically tanφs = O(U−1/2) for small U. This therefore suggests
that once spanwise modulation is included, the marginal convective instability can
indeed evolve into isolated solitary waves, but only along modulation directions lying
outside wide wedges about the flow direction.

Of course, the spanwise modulation can be included for any neutral mode, as in § 5.
From (6.3) we see that Dmm is negative for all neutral modes, while we have already
noted that Dkk approaches zero from above as one moves along the neutral curve
from ks to ki. From this it follows that the wedge angle φs narrows to zero as ki is
approached, allowing solitary solutions over an increasingly wide range of directions
in (X,Z)-space. For k > ki, the NLS equation will take its plus (focusing) form in all
modulation directions.

7. Concluding remarks
In this paper we have investigated the nonlinear evolution of two distinct types of

instability waves in the canonical problem of a fluid-loaded elastic plate with mean
flow. We have demonstrated that a NEW destabilized by damping can be stabilized
without the need to introduce mean-flow shear, either for O(1) values of the tension
coefficient τ and low oscillation frequency, or for large τ and any frequency within
the NEW range. The nonlinearities act to increase the plate restoring stiffness until
it balances the destabilizing effects of the fluid. Since the rate of working of the
dashpots is proportional to the square of the oscillation frequency, it follows that
the oscillation frequency is constantly reduced, and in the saturated state we have
ω = 0 and the amplitude is then constant. Divergence instability is an important
concept in aero-elasticity, and for the infinite plate considered here corresponds to
the excitation of the NEWs by even a very small amount of damping. In the present
problem divergence instability can then be identified on the lower branch of the
dispersion curve in figure 2 between the points (kb, ωb) and (k0, 0). In this language,
our conclusion is that the amplitude of the divergence instability will grow in time,
but that the nonlinear effects will act to decrease its frequency down to zero, so that
it evolves into a static deflection of constant amplitude. This is in agreement with the
numerical simulations of Lucey et al. (1997).

We have also analysed the nonlinear behaviour of the convective instability. For
strictly two-dimensional motion we predict that the wave train will be defocused
and will decay in time, but once slow spanwise modulation is included it turns out
that, owing to the second derivatives of the dispersion function being of opposite
sign, wave focusing, and hence isolated soliton solutions, can occur in modulation
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directions lying outside rather broad wedges about the flow direction. Wave focusing
can also be seen when expanding about a range of other neutral modes, even for
strictly two-dimensional motion. The amplitude of possible isolated soliton solutions
is shown to be potentially significant in practice.

We have already noted, at the end of § 3, that it has been known for some time that
steady-flow shear can also stabilize a NEW. Inclusion of this effect within a nonlinear
scheme, presumably using the stabilizing component of the hydrodynamic pressure
to push the linear growth rate to higher order where it is balanced by the cubic
nonlinearities from the plate equation, may be possible, and this is being investigated
further. Other aspects to be considered include the evolution of absolute instability
in these problems, and the effects of finite, as opposed to infinite, plate length. The
precise development of particularly steep nonlinear waves along the wedge directions
tanφ = tanφs, exactly as done by Hui & Hamilton (1979) for the ship-wave problem,
could also be of some interest. We also note that NLS solitons have also been found
by Watanbe & Sugimoto (2000), in the context of wave motion along an elastic beam.

Finally, we note that the results of this paper remain qualitatively unchanged if
the nonlinear curvature term is linearized in our plate equation (i.e. if the first term
in (2.1) is replaced by ηxxxx ). This change would mean that the elastic term in our
plate equation would be identical to that used by Abrahams (1987) and Sorokin
(2000). Moreover, it would then match the standard von Kármán theory of a plate
(see for example Stoker 1968). Quantitatively, removal of this effect would mean the
following: deletion of the term 3k6 in the numerator of (3.5), so that the saturated
amplitude for the NEW with low frequency is modified, with the term 9U3/28 in the
denominator of (3.10) replaced by 15U3/14; and for the nonlinear stability of the
neutral modes, the term 3k6

s /2 in the coefficient l is removed (note that this has no
effect on the sign of l, and hence on the existence of solitary waves or otherwise).
Qualitatively, this modification of the plate equation therefore has no effect on the
conclusions reached in this paper.

This work has benefited from many fruitful discussions with Professor David
Crighton FRS (1942–2000), to whose memory this paper is dedicated with gratitude
and affection. Financial support provided by the US Office of Naval Research under
grant N00014-96-1-1085 is acknowledged. Conversations with Professor S. Sorokin
are also gratefully acknowledged.

Appendix
In this Appendix we present a physical derivation of the nonlinear wave energy W .

The analysis is in exact parallel with that of Cairns (1979), who investigated linear
problems with fixed frequency. The idea is to consider a wave whose amplitude is
built up slowly from rest starting at time t = −∞. We therefore write, in line with the
multiple scale approach used in § 3, the plate deflection as

η(x, t) = A(t) exp

(
ikx− i

∫ t

−∞
ω(t′)dt′

)
, (A 1)

where the amplitude A and frequency ω vary only slowly with time t, while the
wavenumber k remains fixed. At each instant in time, ω, k and |A| are related by the
dispersion relation (3.13). In order to allow the wave (A 1) to build up from rest, an
external force needs to be applied to match the difference between the force exerted
on the plate by the fluid and the force exerted on the fluid by the plate. As the plate
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vibrates this external force does work (either positive or negative), thereby providing
the wave energy. The pressure exerted by the fluid on the plate is determined simply
from the linearized Bernoulli equation and Laplace’s equation, while the pressure
exerted by the plate on the fluid is

ηxxxx + ηtt − τ

s

(∫ s

0

η2
x′ dx

′
)
ηxx ; (A 2)

recall that the only nonlinearity which is relevant to the NEW described in § 3.3 is the
tension due to bending, so that the other nonlinear terms in the plate equation and
boundary conditions (2.1)–(2.4) are ignored here. Using (A 1), together with similar
expressions for the fluid pressure and potential, it follows that the external pressure
which needs to be imposed is

−iDNLω

dA

dt
− i

DNLωω

2!
A

dω

dt
. (A 3)

The plate normal velocity is −iωA (neglecting the slow evolution of A), and it is
therefore an easy matter to show that the rate of working of the external pressure,
averaged over a period of the fast oscillation, is

ωDNLω

4

d|A|2
dt

+
|A|2

4

DNLωω

2!

dω2

dt
. (A 4)

This expression can now be simplified by using (3.13) to convert the time derivative
of ω into the time derivative of |A|, and then integrating from −∞ up to t yields the
wave energy W (t) in the form

W (t) =

∫ t

−∞
ENLd|A|2

dt
dt, (A 5)

where

ENL =
ωDNLω

4
− DNLωω DNL|A| ω|A|

8DNLω

. (A 6)

This expression for the wave energy simplifies exactly to the result derived by Cairns
when ω is independent of time and the amplitude-dependent term is removed from
the dispersion relation.
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